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SPATIAL STATIONARY LONG WAVES IN SHEAR FLOWS

UDC 532.592.2; 517.958V. M. Teshukov

The system of integrodifferential equations describing the spatial stationary free-boundary shear flows
of an ideal fluid in the shallow-water approximation is considered. The generalized characteristics of
the model are found and the hyperbolicity conditions are formulated. A new class of exact solutions
of the governing equations is obtained which is characterized by a special dependence of the desired
functions on the vertical coordinate. The system of equations describing this class of solutions in the
hyperbolic case is reduced to Riemann invariants. New exact solutions of the equations of motion are
found.
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Classical shallow-water theory has been widely used in the modeling of wave processes. A mathematical
justification of this approximate model was developed by Ovsyannikov [1] (see also [2]). The model taking into
account the shear nature of the motion has been studied to a lesser degree. The approach used in the present study
is based on the extension of the theory of characteristics for systems of integrodifferential equations as proposed in
[3, 4]. This allows one to analyze the possible types of waves on shear flows busing the analogy with the classical
case.

1. Formulation of the Problem. We consider the long-wave approximation of the stationary Euler
equations

(U · ∇)u+ px/ρ = 0, (U · ∇)v + py/ρ = 0,

pz = −ρg, div U = 0,
(1.1)

which is derived from the exact equations governing the motion of an ideal incompressible heavy fluid by using
an asymptotic expansion in the small parameter ε = H0/L0 (H0 is the characteristic vertical scale and L0 is the
characteristic horizontal scale; H0/L0 � 1). In (1.1), U = (u, v, w) is the fluid velocity, p is the pressure, ρ = const is
the fluid density, and x, y, and z are Cartesian coordinates in space.

The approximate expression for the vorticity vector Ω is obtained from the standard expression (wy−vz, uz−
wx, vx − uy) by neglecting small terms of order ε or higher:

Ω = (−vz, uz, vx − uy).

By virtue of (1.1), the vector Ω satisfies the equation

Ωt + (U · ∇)Ω = (Ω · ∇)U . (1.2)

From (1.2) it follows that if uz = 0 and vz = 0 at the initial time, then uz = 0 and vz = 0 at all times. The class
of solutions characterized by the inequality u2

z + v2
z 6= 0 will be called shear flows. In the following, we consider

free-boundary shear flows in a layer 0 6 z 6 h(x, y). On the free surface, z = h(x, y), the pressure is constant,
p = p0 = const. In addition, the kinematic condition( h∫

0

u dz
)
x

+
( h∫

0

v dz
)
y

= 0
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and the nonpenetration condition w = 0 on the even bottom z = 0 should be satisfied. Taking into account the
boundary conditions, we find the pressure distribution in the fluid (the hydrostatic law):

p = p0 + ρg(h− z). (1.3)

Substitution of (1.3) into (1.1) yields the equations

(U · ∇)u+ ghx = 0, (U · ∇)u+ ghy = 0,

w = −
z∫

0

(ux + vy) dz′,
( h∫

0

u dz
)
x

+
( h∫

0

v dz
)
y

= 0,
(1.4)

which represent an extension of the classical shallow-water equations to shear flows. The classical model

uux + vuy + ghx = 0, uvx + vvy + ghy = 0,

w = −z(ux + vy), (hu)x + (hv)y = 0

describes particular solutions of Eqs. (1.4) — stationary shearless flows, for which uz = 0 and vz = 0. We note that
stationary plane-parallel shear flow were studied in [5].

To formulate the initial-boundary-value problem for a fixed domain, we convert to mixed Eulerian–
Lagrangian coordinates x′, y′, and λ:

x′ = x, y′ = y, Φ(x′, y′, λ) = z.

Here the function Φ(x′, y′, λ) is a solution of the Cauchy problem

u(x, y,Φ)Φx + v(x, y,Φ)Φy = w(x, y,Φ), Φ
∣∣∣
x=0

= Φ0(y, λ);

it is assumed that u(0, y,Φ0(y, λ)) 6= 0, where λ ∈ [0, 1]. The function Φ0(y, λ) is chosen such that λ = 0 corresponds
to the even bottom [Φ0(y, 0) = 0] and λ = 1 to the free surface [Φ0(y, 1) = h(0, y)]. Then, the equalities Φ0(x, y, 0) =
0 and Φ0(x, y, 1) = h(x, y) are valid for all x. Therefore, in the new variables, the region occupied by the fluid is
the fixed layer 0 6 λ 6 1.

Equations (1.4) become

(u · ∇)u+ g
( 1∫

0

H dν
)
x

= 0, (u · ∇)v + g
( 1∫

0

H dν
)
y

= 0,

(uH)x + (vH)y = 0,
(1.5)

where H = Φλ(x, y, λ) and u = (u(x, y, λ), v(x, y, λ), 0). Once system (1.5) is solved, one can find

Φ =

λ∫
0

H dν, w = uΦx + vΦy.

Equations (1.5) can be written in operator-differential form

AVx +BVy = 0, V = (u, v,H)t, (1.6)

where the operators A and B are given by

A =


u, 0, g

1∫
0

. . . dν

0, u, 0

H, 0, u

 , B =



v, 0, 0

0, v, g

1∫
0

. . . dν

0, H, v

 .
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Here the action of the operator J =

1∫
0

. . . dν on the function f(x, y, λ) is defined by

(Jf)(x, y) =

1∫
0

f(x, y, ν) dν.

Let us find conditions under which system (1.6) is a generalized hyperbolic one. Below, we use the following
definitions (see [3, 6]).

1. A curve Γ in the plane of the variables x and y with the normal n = (ξ, η) is a characteristic of system (1.6)
if the problem

(F , (ξA+ ηB)ϕ) = 0 (1.7)

has a nontrivial solution F . Here ϕ = (ϕ1, ϕ2, ϕ3)t is an arbitrary vector function which is smooth in the variable
λ and F = (F1, F2, F3) is the desired eigenfunctional (acting on functions of the variable λ); (F ,ϕ) denotes the
result of action of the functional F on the trial function ϕ.

2. The equality
(F , AVx +BVy) = 0

is called the characteristic relation (condition).
3. System (1.6) is called hyperbolic in the direction of the vector µ = (µ1, µ2), |µ| = 1 if for any vector

σ = (σ1, σ2) orthogonal to µ, the problem

(F , (ζ(µ1A+ µ2B) + σ1A+ σ2B)ϕ) = 0

(n = ζµ + σ) has nontrivial solutions F = F α only for real ζ = ζα and the set of eigenfunctionals {F α} has the
completeness property [if the equality F α holds for any (F α,ϕ) = 0, then ϕ = 0]. We note that here {F α} can be
both regular functionals represented by locally integrable functions and singular functionals belonging to the space
of generalized functions.

2. Characteristics of the System of Stationary Long Waves. Relation (1.7) leads to the following
equation for the vector functional F = (F1, F2, F3):

(F , (ξA+ ηB)ϕ) = (F1, (ξu+ ηv)ϕ1) + ξg

1∫
0

ϕ3 dν(F1, 1) + (F2, (ξu+ ηv)ϕ2)

+ ηg

1∫
0

ϕ3 dν(F2, 1) + ξ(F3,Hϕ1) + η(F3,Hϕ2) + (F3, (ξu+ ηv)ϕ3) = 0.

By virtue of the independence of the trial functions ϕi, the following equalities hold:

(F1, (ξu+ ηv)ϕ1) + ξ(F3,Hϕ1) = 0, (F2, (ξu+ ηv)ϕ2) + η(F3,Hϕ2) = 0,

(F3, (ξu+ ηv)ϕ3) + g

1∫
0

ϕ3 dν(ηF2 + ξF1, 1) = 0.
(2.1)

Combining the first two relations, we obtain

(ηF1 − ξF2, (ξu+ ηv)ϕ) = 0; (2.2)

(ηF2 + ξF1, (ξu+ ηv)ϕ) + (ξ2 + η2)(F3,Hϕ) = 0. (2.3)

Because H 6= 0, the action of F3 on an arbitrary smooth function ϕ is defined by the formula

(F3, ϕ) = − 1
ξ2 + η2

(
ηF2 + ξF1,

ξu+ ηv

H
ϕ
)
, (2.4)

which follows from (2.3). Next, using the third equation of system (2.1), we obtain the problem for the unknown
functional ηF2 + ξF1: (

ηF2 + ξF1,
(ξu+ ηv)2

H
ϕ
)
− g(ξ2 + η2)

1∫
0

ϕdν(ηF2 + ξF1, 1) = 0. (2.5)
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Let us find the solutions of problem (2.1) in the class of generalized functions. For a fixed value λ ∈ (0, 1), we
choose a vector n = (ξ, η) orthogonal to the vector (u(λ), v(λ)) [ξ and η satisfies the relation −ξ/η = tan θ(λ), θ
and q define polar coordinates in the plane (u, v), u = q cos θ, and v = q sin θ]. In the following, it is assumed that θ
is a monotonic function of λ; for definiteness, θλ > 0. Here and below, the arguments x and y of the functions u,
v, and θ are omitted.

Obviously, Eqs. (2.2)–(2.5) are satisfied if we set

ηF1 − ξF2 = δ(ν − λ), ηF2 + ξF1 = 0, F3 = 0. (2.6)

Let us find the vector µ present in the definition of the direction of hyperbolicity. According to this definition,
it is necessary to find a vector µ such that for any λ, the equation ζ(µ1u(λ) + µ2v(λ)) + σ1u(λ) + σ2v(λ) = 0 is
uniquely solvable for ζ. Obviously, this condition implies that the inequality µ1u(λ) + µ2v(λ) 6= 0 should be valid
for all values of λ. Let µ1 = − sin γ and µ2 = cos γ. The previous inequality becomes sin (θ− γ) 6= 0. Such γ exists
only if θmax > θ(λ) > θmin and

θmax − θmin < π. (2.7)

Indeed, if this inequality is valid, then, obviously, sin (θ − γ) 6= 0 for γ belonging to the interval (θ1, θ0 + π) and to
all intervals obtained by shifting this interval by kπ, where k is an integer. If θmax− θmin > π, then for any γ, there
exists θ ∈ (θmin, θmax) such that sin (θ − γ) = 0. The above reasoning shows that inequality (2.7) is a necessary
condition for the hyperbolicity of Eqs. (1.6).

Subsequently, in constructing the eigenfunctionals at a fixed point (x0, y0) on plane (x, y), we shall choose
a Cartesian basis with origin at (x0, y0) so that θmax = −θmin. In a neighborhood of the point (x0, y0), the
characteristic equations are specified by y = y(x) and denoted by k = dy/dx. Setting ξ = −k and η = 1 in the
previous formulas, from (2.6) we obtain the components

F 1λ
1 = δ(ν − λ), F 1λ

2 = kλδ(ν − λ), F 1λ
3 = 0

of the eigenfunctional F 1λ = (F 1λ
1 , F 1λ

2 , F 1λ
3 ) corresponding to the eigenvalue kλ(x, y) = tan θ(x, y, λ) (λ is fixed).

The second vector functional F 2λ = (F 2λ
1 , F 2λ

2 , F 2λ
3 ) corresponding to the value kλ(x, y) = tan θ(x, y, λ), is deter-

mined using (2.4) and the relations

F2 − tan θ(λ)F1 = (1 + tan 2 θ(λ))δ′(ν − λ), F1 + tan θ(λ)F2 = 0.

Direct substitution shows that

F 2λ
1 = − tan θ(λ)δ′(ν − λ), F 2λ

2 = δ′(ν − λ), F 2λ
3 =

vλ − tan θ(λ)uλ
H

δ(ν − λ)

satisfy Eqs. (2.1). In these formulas, δ(ν − λ) is the Dirac delta function acting on a smooth function ϕ(ν)
by a the rule (δ(ν − λ), ϕ(ν)) = ϕ(λ), and δ′(ν − λ) is its derivative acting on smooth functions by the rule
(δ′(ν − λ), ϕ(ν)) = −ϕλ(λ).

To construct one more solution of the eigenvalue problem, we introduce the functional Pλ acting on a smooth
function ϕ by the rule

(Pλ, ϕ(ν)) =

1∫
0

H ′(ϕ(ν)− ϕ(λ))
(v′ − u′ tan θ)2

dν.

Here and below, the quantities with a prime depend on ν and those without a prime depend on the variable λ.
The integral in the above formula is calculated in the sense of the principal value. Equation (2.5) holds for
n = (ξ, η) = (− tan θ(λ), 1) if

F2 − tan θ(λ)F1 = δ(ν − λ) + g(1 + tan 2 θ(λ))Pλ. (2.8)

The components of the third vector functional F 3λ corresponding to the same eigenvalue kλ = tan θ(λ) are deter-
mined using relations (2.4) and (2.8) and the additional equality

F1 + tan θ(λ)F2 = 0.
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As a result, we obtain

F 3λ
1 = − tan θ(λ)

1 + tan 2 θ(λ)
δ(ν − λ)− g tan θ(λ)Pλ, F 3λ

2 =
1

1 + tan 2 θ(λ)
δ(ν − λ) + gPλ,

(F 3λ
3 , ϕ) = −g

1∫
0

ϕ′ dν

v′ − u′ tan θ
.

Let us determine the eigenvalues k outside the range of the function tan θ(λ) (v− ku 6= 0 for any λ ∈ [0, 1])
and the corresponding eigenfunctionals. Equation (2.2) yields the equality F1 + kF2 = 0. Equation (2.5) implies
that

(F2 − kF1, ϕ) = g(1 + k2)

1∫
0

ϕH ′dν

(v′ − ku′)2
(F2 − kF1, 1).

Setting ϕ = 1 in this equality, we obtain the characteristic equation for k:

1 = g(1 + k2)

1∫
0

H ′ dν

(v′ − ku′)2
. (2.9)

Taking into account that F2 − kF1 is determined with accuracy up to a factor, we choose this factor such that
(F2 − kF1, 1) = 1. Then, using (2.4) and (2.6), we find the components of the vector functionals F i = (F i1, F

i
2, F

i
3)

corresponding to the roots ki of the characteristic equation (2.9):

(F i1, ϕ) = −kig
1∫

0

H ′ϕ′

(v′ − kiu′)2
dν, (F i2, ϕ) = g

1∫
0

H ′ϕ′

(v′ − kiu′)2
dν, (F i3, ϕ) = −g

1∫
0

ϕ′

v′ − kiu′
dν.

3. Characteristic Equation. The characteristic equation (2.9) can be written as

χ(k) = g

1∫
0

(1 + k2)H ′ dν

u′2(tan θ′ − k)2
− 1 = χ̃(γ) = g

1∫
0

H ′ dθ′

θ′νq
′2 sin2(θ′ − γ)

− 1 = 0.

Here the quantity k and the variable γ are linked by the relation k = tan γ. We note that χ̃(γ) = χ̃(γ ± π) and
χ̃(γ) →∞ for γ → θ1 and for γ → θ0 + π. Since

χ̃′′(γ) = g

1∫
0

(sin2(θ′ − γ) + 3 cos2(θ′ − γ))H ′ dθ′

θ′νq
′2 sin4(θ′ − γ)

> 0,

it can be shown that on the interval (θ1, θ0+π) the function χ̃(γ) has the single minimum at the point γ∗ ∈ (θ1, θ0+π)
where χ̃′(γ∗) = 0. Note that if χ̃(γ∗) < 0, the equation χ̃(γ) = 0 has roots γ1 and γ2 on the interval (γ∗ − π, γ∗),
and γ1 ∈ (γ∗− π, θ0) and γ2 ∈ (θ1, γ∗). In the case where χ̃(γ∗) > 0, the characteristics equation does not have real
roots. Thus, satisfaction of the inequality

χ̃(γ∗) < 0 (3.1)

at the point γ∗, where χ̃′(γ∗) = 0 is a sufficient and necessary condition for the existence of two real roots of the
characteristic equation. Below, we assume that condition (3.1) is satisfied.

We note that it is possible to formulate a simpler sufficient condition for the existence of two real roots.
Indeed, if

g

1∫
0

H ′ dν

u′2
− 1 < 0, (3.2)

then there exist ki (i = 1, 2) such that χ(ki) = 0; in this case, k1 ∈ (−∞, tan θ0) and k2 ∈ (tan θ1,∞). This follows
from the following properties of the function χ(k): χ(k) → ∞ as k → u1 and k → u0 and χ(k) < 0 for k of large
absolute values by virtue of (3.2). The continuity of χ(k) implies that this function vanishes at least two points, k1

and k2.
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x0 x1 k2k1

Fig. 1.

Assuming the existence of two real roots γ1 and γ2 on a segment of length π (and the corresponding values
k1 = tan γ1 and k2 = tan γ2), we obtain conditions under which the characteristic equation (2.9) has no complex
roots. We consider the continuation of the function χ in the plane of the complex argument z. Let ξ0 = tan θ(0)
and ξ1 = tan θ(1). The function χ(z) is analytic outside the segment [ξ0, ξ1] and has zeroes at the points z = ki

(i = 1, 2) and first-order poles at the points z = ξ0 and z = ξ1. Let us consider the contour C (see Fig. 1) including
a circle of radius δ−1 and the contours enclosing the points z = ki and the cut [ξ0, ξ1]. The contours are located at
a distance δ from the corresponding points and the cut. According to the argument principle [7], we have

(2π)−1∆C argχ(z) = N − P,

where N is the number of zeroes, P is the number of poles in the region bounded by the circuit C, and ∆C arg
denotes the increment of the argument along the contour C. Since χ(z) does not have poles outside [ξ0, ξ1], the
condition

∆C argχ(z) = 0 (3.3)

guarantees the absence of complex zeroes in the indicated region. We note that as δ → 0, the increment of the
argument tends to zero in tracing the large circle and the increments of the argument cancel each other in tracing
the contours enclosing the zeroes k1 and k2 and the poles ξ0 and ξ1. At the limit, condition (3.3) becomes

∆[ξ0,ξ1] argχ+(z)/χ−(z) = 0, (3.4)

where χ±(z) are the limiting values of the function χ(z) on the segment [ξ0, ξ1] from the upper and lower half-planes.
In addition, we require satisfaction of the condition

χ±(z) 6= 0, z ∈ [ξ0, ξ1], (3.5)

which eliminates the neutral case where roots appear on the segment [ξ0, ξ1].
4. Completeness of the System of Characteristic Functionals. Assuming that the hyperbolicity

conditions (3.4) and (3.5) are satisfied, we study the completeness of the system of eigenfunctionals. Let the vector
function ϕ satisfy the equalities

(F 1λ,ϕ) = 0, (F 2λ,ϕ) = 0, (F 3λ,ϕ) = 0, (F i,ϕ) = 0.

We show that ϕ = 0. From the first two equalities we obtain

ϕ1 + ϕ2 tan θ = 0, ϕ1λ tan θ − ϕ2λ + (vλ − uλ tan θ)ϕ3/H = 0.

Taking into account that vλ − uλ tan θ = qθλ/ cos θ, θλ 6= 0, we solve these relations for ϕ1 and ϕ3:

ϕ1 = −ϕ2 tan θ, ϕ3 = H(ϕ2λ + ϕ2θλ tan θ)/(qθλ cos θ). (4.1)
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Substituting ϕ1 and ϕ3 into the equality

(F 3λ,ϕ) = − tan θ
1 + tan 2 θ

ϕ1 − g tan θ

1∫
0

H ′(ϕ′1 − ϕ1)
(v′ − u′ tan θ)2

dν

+
1

1 + tan 2 θ
ϕ2 + g

1∫
0

H ′(ϕ′2 − ϕ2)
(v′ − u′ tan θ)2

dν − g

1∫
0

ϕ′3 dν

v′ − u′ tan θ
= 0

and performing simple transformations, we obtain the integral equation for ϕ2:

ϕ2 − g

1∫
0

H ′

q′2θ′λ

∂

∂ν

(1 + tan 2 θ′)ϕ′2 − (1 + tan 2 θ)ϕ2

tan θ′ − tan θ
dν = 0. (4.2)

Let us show that this homogeneous integral equation has nontrivial solutions. We first establish that if ϕi is
a solution of the problem

(B − kiA)ϕi = 0 (4.3)

(ki 6= tan θ), then
(F 3λ, Aϕi) = 0. (4.4)

Indeed, the equality

(F 3λ, Bϕi) = tan θ(λ)(F 3λ, Aϕi) (4.5)

is valid because F 3λ is the eigenfunctional corresponding to the eigenvalue tan θ(λ). The equality

(F 3λ, Bϕi) = ki(F 3λ, Aϕi) (4.6)

is a consequence of (4.3). Comparing (4.5) and (4.6) and taking into account that tan θ(λ) 6= ki, we obtain (4.4).
Simple calculations show that the eigenfunction corresponding to a root ki of the characteristic equations (2.9) has
the form

ϕi = (ki/(v − kiu),−1/(v − kiu), (1 + ki2)H/(v − kiu)2).

From the aforesaid it is easy to see that

(Aϕi)2 = −u/(v − kiu) = −1/(tan θ − ki) (4.7)

is a nontrivial solution of Eq. (4.2). The last assertion is easily verified by substituting the function (4.7) into (4.2).
We consider the function

φ = ϕ2 −
2∑
i=1

βi

tan θ − ki
,

where the coefficients βi, independent of λ, are chosen such that φ(0) = 0 and φ(1) = 0. Obviously, φ also satisfies
Eq. (4.2). Integration by parts transforms the singular integral equation (4.2) to the standard form

(1 + ξ2)φ
( 1

1 + ξ2
− gH1

q21θ1λ(ξ1 − ξ)
+

gH0

q20θ1λ(ξ0 − ξ)
+ g

ξ1∫
ξ0

∂

∂ξ′

( H ′

q′2θ′λ

) dξ′

ξ′ − ξ

)
+ g

ξ1∫
ξ0

∂

∂ξ′

( H ′

q′2θ′λ

) (1 + ξ′2)φ′ dξ′

ξ′ − ξ
= 0.

We assume that the functions H and q have the derivative with respect to the variable λ that satisfies the Hölder
condition, the function θ is twice differentiable with respect to λ, and its second derivative also satisfies the Hölder
condition. The hyperbolicity conditions (3.4) and (3.5) guarantee that this singular equation has a unique solution
in the class of Hölder functions [8]. Therefore, φ = 0 and

ϕ2 =
2∑
i=1

βi

tan θ − ki
.

By virtue of (4.1), the relations (F i,ϕ) = 0 can be written as

g

1∫
0

H ′

q′2θ′λ

∂

∂ν

( (1 + tan 2 θ′)ϕ′2
tan θ′ − ki

)
dν = 0.
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Using the same reasoning as in the derivation of equality (4.4), it is easy to show that Aii 6= 0 and

Aij = g

1∫
0

H ′

q′2θ′λ

∂

∂ν

( 1 + tan 2 θ′

(tan θ′ − ki)(tan θ′ − kj)

)
dν = 0 (4.8)

for i 6= j. Then, from (4.1) and (4.8) it follows that βi = 0 (i = 1, 2), ϕ2 = 0, and ϕ = 0. The completeness of the
system of eigenfunctionals is proved.

5. Characteristic Form of the Equations of Motion. Let us write the equations of fluid motion in the
characteristic form. For this, we sequentially act on system (1.6) with the eigenfunctionals F 1λ, F 2λ, F 3λ, and F i.
After transformations, we have

D
(q2

2
+ gh

)
= 0, D

(θλ
H

)
− 2qλ
qH

Dθ = 0,

q2Dθ − g tan θDh+
g

cos2 θ

1∫
0

H ′(q′2Dθ′ − q2Dθ) dν
q′2 cos2 θ′(tan θ′ − tan θ)2

− g

cos2 θ

1∫
0

DH ′ dν

tan θ′ − tan θ
= 0,

ki

1 + ki2
Dih+

1∫
0

H ′Diθ′ dν

cos2 θ′(tan θ′ − ki)2
−

1∫
0

DH ′ dν

tan θ′ − ki
= 0.

(5.1)

Here D = ∂/∂x+ tan θ ∂/∂y and Di = ∂/∂x+ ki ∂/∂y are the derivatives along the characteristic directions of the
continuous and discrete spectra and ki (i = 1, 2) are roots of the characteristic equation (2.9). If the hyperbolicity
conditions (3.4) and (3.5) are satisfied, the characteristic relations (5.1) are equivalent to Eqs. (1.6).

From Eqs. (5.1) we obtain the Bernoulli integral

q2 + 2gh = q2m(ψ, λ), (5.2)

where qm(ψ, λ) is an arbitrary function and ψ(x, y, λ) (analog of the streamfunction) is defined by the relations
ψy = Hu and ψx = −Hv. In the particular case where qmψ(ψ, λ)ψλ(x, y, λ) + qmλ(ψ, λ) = 0, from (5.2) we obtain
the relation qλ(x, y, λ) = 0. Then from the second equation of system (5.1) it follows that

D(θλ/H) = 0, θλ/H = A(ψ, λ) (5.3)

[A(ψ, λ) is an arbitrary function].
6. New Class of Exact Solutions. We consider the class of particular solutions of Eqs. (5.1) characterized

by the equalities qm ≡ const and A ≡ const. From (5.3) it follows that

θ = Az + θ0(x, y), q(x, y) =
√
q2m − 2gh(x, y),

where θ0(x, y) is the unknown function. Substituting the representation of the solution

u(x, y, z) = q(x, y) cos (Az + θ0(x, y)), v(x, y, z) = q(x, y) sin (Az + θ0(x, y))

into (1.4), we obtain the following system of equations for the unknown functions q(x, y) and θ0(x, y):

tan θ0qx − qy + qθ0x + q tan θ0θ0y = 0,

(g tan (Ah+ θ0)−Aq2)qx − (g +Aq2 tan (Ah+ θ0))qy + gqθ0x + gq tan (Ah+ θ0)qy = 0.
(6.1)

Let us determine the characteristics of system (6.1). The slopes of the characteristics are found from the quadratic
equation

k2 − Aq2(tan (Ah+ θ0) + tan θ0)
Aq2 − g(tan (Ah+ θ0)− tan θ0)

k +
Aq2 tan θ0 tan (Ah+ θ0)− g(tan (Ah+ θ0)− tan θ0)

Aq2 − g(tan (Ah+ θ0)− tan θ0)
= 0.

The roots of this equation

k1,2 =
Aq2(tan (Ah+ θ0) + tan θ0)

2(Aq2 − g(tan (Ah+ θ0)− tan θ0)
± tan (Ah+ θ0)− tan θ0

2(Aq2 − g(tan (Ah+ θ0)− tan θ0)

√
A2q4 + 4Agq2 cot Ah− 4g2

are real provided that

q2/(gh) > 2 tan (Ah/2)/(Ah).
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Since tan (Ah/2) > Ah/2 for 0 < Ah < π, the given condition is stronger than the conventional condition of flow
supercriticality q2 > gh. The characteristic conditions

θx + kiθx +
1
gq

[
− Aq2

2
∓

√
A2q4

4
+Agq2 cot Ah− g2

]
(qx + kiqy) = 0

are reduced to Riemann invariants. Taking into account that h = (q2m − q2)/(2g), we introduce the functions

µ1,2(q) =
1
g

q∫
q0

[Aq′
2
±

√
A2q′2

4
+Ag cot

A(q2m − q′2)
2g

− g2

q′2

]
dq′

and write the system of equations in equivalent form:

r1x + k1r1x = 0, r1 = θ − µ1(q),

r2x + k2r2x = 0, r2 = θ − µ2(q).

For A → 0, this system becomes the classical shallow-water equations for stationary supercritical flows (see [9],
which describes the gas-dynamic equations coinciding with the shallow-water equations for a particular polytropic
exponent).

In the class of simple waves [solutions of the form of r1 = r1(α(x, y)) and r2 = r2(α(x, y)] Eqs. (6.1) are
integrable. Following [9], for a simple wave of the first type we obtain the relations

r1 = θ0 − µ1(q) = r10 = const, y − k2x = F (θ0),

and for a simple wave of the second type, the relations

r2 = θ0 − µ2(q) = r20 = const, y − k1x = F (θ0),

where F (θ0) is an arbitrary function. The above relations express that one of the Riemann invariants is constant
and that the families of characteristics in the domain of definition of simple waves consists of straight lines. If the
function F (θ0) is specified, in both cases we have two equations for the two unknowns q and θ0. Note that the
existence of simple waves for the general system (1.6) was studied in [10].

In the present paper, the conditions of generalized hyperbolicity are formulated and the generalized charac-
teristics and characteristic conditions are obtained for the system of integrodifferential equations (1.6) describing
stationary long waves in free-boundary shear flow. The analysis revealed a new class of exact solutions of Eqs. (1.6),
characterized by a special dependence of the unknown functions on the vertical coordinate. The simple-waves
equations were integrated for the constructed special class of spatial flows.
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